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Abstract
Coagulation complications are significant contributors to morbidity and mortality in trauma
patients. Although the lethal triad of hypothermia, acidosis and coagulopathy has been recognized
for over a decade, the underlying mechanisms related to the development of coagulopathy remain
unclear. Recent data suggest that decreased fibrinogen levels contribute to the development of
coagulation disorders. Thus, regulation of fibrinogen availability, not fully understood at present,
may play an important role in survival of trauma patients. This review summarizes the recent
findings of the studies that have explored mechanisms related to changes in fibrinogen availability
following trauma-related events. Trauma alters fibrinogen metabolism in a variety of ways:
hemorrhage – accelerated fibrinogen breakdown; hypothermia – inhibited fibrinogen synthesis; and,
acidosis – accelerated fibrinogen breakdown. However, hemorrhage, hypothermia andcidosis all
result in a consistent outcome of fibrinogen availability deficit, supporting the notion of fibrinogen
supplementation in trauma patients with coagulation defects. Future prospective clinical trials are
needed to confirm the beneficial effects of fibrinogen supplementation in trauma patients with
bleeding complications.

Introduction
Coagulation complications are significant contributors to
morbidity and mortality in trauma patients [1,2]. Mortal-
ity in patients with severe injuries and coagulopathy is
found to be four times greater than in patients with inju-
ries alone [3]. Trauma-related coagulopathy is associated
with hypoperfusion due to tissue injury and blood loss,
hemodilution from resuscitation with crystalloid and/or
colloid solutions, progressive hypothermia and the devel-
opment of acidosis. Since the recognition of the lethal
triad of hypothermia, acidosis, and coagulopathy over a
decade ago [1,2], a great deal of effort has been made to
elucidate possible mechanisms contributing to trauma
related coagulopathy as well as to search for effective treat-
ments [4-7]. Recent data suggest that fibrinogen availabil-
ity may play an important role in the survival of patients.

The purpose of this article is to review recent findings that
have been made concerning clotting protein fibrinogen
metabolism and availability following trauma-related
events, including hemorrhage, resuscitation, hypothermia
and acidosis.

Fibrinogen Availability
As the precursor of clot formation, fibrinogen plays an
important role in coagulation function. Fibrinogen defi-
ciency is associated with uncontrolled bleeding and com-
promised survival [8-12]. Thus, regulation of fibrinogen
availability is critical to survival in trauma patients.

As an acute phase protein, fibrinogen is synthesized in the
liver and released into the circulation. It is catabolized
through normal protein degradation, the coagulation
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process, and other unknown pathways. At any moment,
fibrinogen availability is delineated by the dynamic bal-
ance of synthesis and breakdown. Mathematically, fibrin-
ogen availability can be expressed as:

Fibrinogen availability = [[Fibrinogen] × total plasma vol-
ume] + [synthesis rate × time] - [breakdown rate × time]

Where [fibrinogen] is the initial fibrinogen concentration
(mg/dL); synthesis is the amount of fibrinogen (mg) pro-
duced in a unit of time (hour); and breakdown rate is the
amount of fibrinogen (mg) consumed in a unit of time
(hour).

The importance of initial fibrinogen concentration is
demonstrated by its relationship to maximum allowable
blood loss before casualties reach critical status. Using a
mathematical model to analyze hemostasis during blood
loss that was validated with clinical data collected from
208 consecutive patients, Singbartl et al. showed that the
maximal allowable blood loss is highly dependent on the
initial fibrinogen levels [13]. For instance, for a given
hematocrit (e.g., 45%) and platelet count (e.g., 225 × 103/
μL), when three representative initial fibrinogen levels are
450 mg/dL, 300 mg/dL, and 200 mg/dL, the respective
maximum allowable blood losses are 3750 ml, 1900 ml,
and 750 ml, before critical levels of fibrinogen are
reached. Although the exact critical levels of fibrinogen at
which bleeding complications are provoked are debata-
ble, the point is that bleeding complications do not
always happen after large amounts of blood loss and
hemodilution. Patients with low initial fibrinogen levels
may possibly develop bleeding complications following
even moderate blood loss and hemodilution. These
patients may also have other pathological conditions
present that could contribute to the development of coag-
ulopathy [4,5,14-16].

Fibrinogen concentration is routinely measured by clini-
cal laboratories. In contrast, quantification of fibrinogen
synthesis and breakdown presents technical challenges.
Consequently, fibrinogen concentration has been the
only measurement available to assess changes in fibrino-
gen. It is worth clarifying that fibrinogen concentration
does not in and of itself reveal any information about syn-
thesis or breakdown. For instance, an increased fibrinogen
concentration may be due to decreased consumption,
and/or increased production, or simply deceases in
plasma volume. Thus, to fully understand changes in
fibrinogen availability requires information of fibrinogen
metabolism.

Quantification of Fibrinogen Metabolism
The important role of fibrinogen in coagulation led to
investigations to study fibrinogen kinetics. In the 1960s

and 1970s, fibrinogen synthesis was quantified using
radioactive isotope labeled amino acids in experimental
animals [17-19]. Upon administration, radioactive
labeled amino acids were incorporated into fibrinogen
molecules and the increased radioactivities in fibrinogen
over time were used to reflect fibrinogen production. By
comparing the radioactivities in fibrinogen with the con-
trol group, this approach allowed assessment of changes
in fibrinogen production, but did not offer any informa-
tion about fibrinogen breakdown. To measure fibrinogen
catabolism, others used radioactive labeled fibrinogen to
investigate fibrinogen breakdown in experimental ani-
mals and humans [20-25]. In this approach, radioactive
labeled fibrinogen (i.e., 125I – fibrinogen) was injected
into subjects and blood samples were withdrawn daily for
5 to 14 days afterwards. Fibrinogen was then isolated
from the blood samples and its radioactivities were meas-
ured. The decreases of radioactivities of fibrinogen over
time were used to reflect fibrinogen breakdown. This
approach was used in the past as an in vivo means to assess
changes of fibrinogen breakdown under different patho-
physiological states [20-25]. Unfortunately, this approach
did not allow quantification of fibrinogen synthesis. Con-
sequently, changes in fibrinogen metabolism remained
unclear due to the lack of a methodology to quantify
fibrinogen synthesis and breakdown.

Recently, Martini et al. developed an in vivo methodology
to quantify fibrinogen synthesis and breakdown rates
simultaneously and independently [26]. The simultane-
ous and independent quantification of synthesis and
breakdown provides comprehensive and complete assess-
ment of fibrinogen metabolism and availability. This
methodology involves the infusion of stable isotope
labeled amino acids with subsequent gas chromatography
mass spectrometry analysis. With the infusion of differ-
ently labeled amino acids for different durations, the
incorporation of the isotopic labels in fibrinogen over
time is used to calculate fibrinogen synthesis, while the
decay of the isotopic labels in fibrinogen after the infusion
ceases is used to calculate fibrinogen breakdown. There
are several advantages to this methodology. First, stable
isotopes are naturally occurring and safe for use in
humans; second, synthesis and breakdown rates are quan-
tified simultaneously and independently in the same sub-
ject; and third, the entire study (infusion and blood
samplings) takes only 6 to 8 hours, compared to the days
required in previous approaches. The establishment of
this methodology made it possible to investigate changes
of fibrinogen metabolism in trauma.

Effects of Hemorrhage
Hemorrhage is the leading potentially preventable cause
of death on the battlefield and a major cause of death in
civilian trauma [11,27]. One of the most detrimental
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complications following hemorrhage is the disruption of
hemostasis, resulting in uncontrolled bleeding, dissemi-
nated intravascular coagulation (DIC), and thrombotic
complications [8,10-12]. Based on the limited data avail-
able at present, changes in fibrinogen availability are
involved in the development of clotting disorders. In
acutely injured trauma victims, fibrinogen levels were
observed to be the first coagulation proteins and factors to
drop to pathophysiological levels [8,9], although this is
not a universal finding [28]. The observed decrease of
fibrinogen was not found to be attributable to blood loss
or resuscitation [8,9].

To investigate the effects of hemorrhage on fibrinogen
metabolism, a swine model was used in which a moderate
hemorrhage was induced by withdrawing 35% of esti-
mated total blood volume from the femoral artery [26].
After hemorrhage and stabilization, a stable isotope infu-
sion was performed with 1-13C- phenylalanine for 6 hours
and d5-phenylalanine for 4 hours. During the infusion,
blood samples were collected hourly and isotopic enrich-
ments of fibrinogen from the infusion were determined
using gas chromatography mass spectrometry analysis.
Data from this study showed that after moderate hemor-
rhage, fibrinogen breakdown was accelerated compared
with the control group. There was no change in the fibrin-
ogen synthesis rate (Additional file 1) [26]. The deficit
between fibrinogen production and consumption indi-
cates a potential decrease in fibrinogen availability after
hemorrhage. It is worth mentioning that there were no
changes in pH or temperature associated with the 35%
blood loss in this study, suggesting that the effects
observed in the study were due to hemorrhage only.
Under more severe hemorrhagic shock, changes of fibrin-
ogen metabolism may be different due to possible
changes in pH or temperature resulted from severe blood
loss and compromised tissue perfusion.

Effects of lactated Ringer's Resuscitation
To treat hemorrhagic shock, fluid resuscitation is rou-
tinely used in clinical practice to restore tissue perfusion.
The effects of various crystalloids and colloids with differ-
ent volume-expanding capacities have been reported in
the literature [29-33]. Among these fluids, lactated Ring-
ers solution (LR) is considered part of standard care [34].
The effects of LR on fibrinogen kinetics were reported
recently by Martini et al. in a study of swine [35]. In the
study, a moderate hemorrhage was induced by withdraw-
ing 35% of estimated blood volume in 12 pigs, with an
additional 6 pigs used as controls. Afterwards, the 12
hemorrhaged pigs were randomly divided into the hem-
orrhage only group and hemorrhage-LR resuscitation
group. In the hemorrhage-LR resuscitation group, LR solu-
tion at 3 times the bled volume was given to the pigs while
no fluid was given in the hemorrhage only group. Upon

stabilization, stable isotope infusion was performed in all
three groups, followed by blood drawn hourly and subse-
quent gas chromatography mass spectrometry analysis.
Data from this study [35] showed that compared with the
control value (3.0 ± 0.5 mg/kg/h), fibrinogen breakdown
was similarly increased in both the hemorrhage only
group (5.4 ± 0.7 mg/kg/h) and the hemorrhage-LR resus-
citation group (5.6 ± 0.5 mg/kg/h). There were no signifi-
cant differences in fibrinogen synthesis among the control
group (2.5 ± 0.6 mg/kg/h), the hemorrhage only group
(1.7 ± 0.3 mg/kg/h) or the hemorrhage-LR resuscitation
group (2.6 ± 0.4 mg/kg/h, Additional file 1). This suggests
that the changes in fibrinogen metabolism resulted from
hemorrhagic shock and that LR resuscitation itself did not
affect fibrinogen metabolism. However, the effects of
other resuscitation fluids, such as colloids, on fibrinogen
metabolism remain to be investigated.

Effects of Hypothermia
Hypothermia, clinically defined as a body temperature of
34°C or less, is commonly observed in severely injured
trauma patients [36]. The association of hypothermia to
coagulation dysfunction and mortality has been well
described [36-41]. Compared with patients who had a
body temperature of 36.1 ± 0.7°C, there was a 2.4-fold
increase in blood loss in post-laparotomy patients whose
body temperature was 33.8 ± 0.5°C [37]. In a group of
trauma patients with Injury Severity Scores (ISS) greater
than 25, the mortality increased from 10% to 100% when
body temperature declined from 35°C to less than 32°C
[40]. Among nonsurviving trauma patients, approxi-
mately 80% have body temperatures of less than 34°C at
the time of death [38]. The adverse effects of hypothermia
on coagulation have been indicated by prolonged pro-
thrombin time (PT) and activated partial thromboplastin
time (aPTT) in hypothermic patients and experimental
animals, as well as in plasma samples cooled in vitro [42-
47]. The dynamic changes of fibrinogen metabolism dur-
ing hypothermia were revealed recently by Martini et al
[48].

In a normovolemic swine model, hypothermia of 32°C
was induced using a cold blanket with circulating water at
4°C [48]. Temperature of 32°C was used based on the fact
that 100% mortality was observed when the temperature
in trauma patients dropped below 32°C [40]. When the
animal temperature was lowered to 32°C and stabilized,
stable isotope 1-13C-phenylalanine was infused for 6
hours and d5-phenylalanine was infused for 4 hours.
Blood samples were taken hourly during the infusion and
the isotopic labeling of fibrinogen was determined using
gas chromatography and mass spectrometry analysis. It
was found that hypothermia decreased fibrinogen synthe-
sis, with no effects on fibrinogen breakdown (Additional
file 1) [48]. This observation indicates that, in response to
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cooling, fibrinogen synthesis and degradation are regu-
lated via different mechanisms and that there is a poten-
tial deficit in fibrinogen availability following
hypothermia. The metabolic changes in fibrinogen were
associated with prolonged clotting initiation time and
decreased clotting speed.

Effects of Acidosis
Among all the factors contributing to coagulation disor-
ders, acidosis is one of the most important predictors of
coagulopathy in trauma patients [49], with the likelihood
of death increasing as the severity of acidosis increases
[1,38,50-52]. The detrimental effects of acidosis on coag-
ulation include impaired enzyme activities, depleted
fibrinogen levels and platelet counts, prolonged clotting
times, and increased bleeding times [1,38,50-53]. The
mechanisms contributing to the depletions of fibrinogen
were reported recently by Martini et al [48].

In a swine model, acidosis of pH 7.1 was induced by an
infusion of 0.2 N HCl in LR [54]. When the target pH of
7.1 was achieved and stabilized, a stable isotope infusion
of 1-13C-phenylalanine and d5-phenylalanine was per-
formed with hourly blood sampling. Following gas chro-
matograph and mass spectrometry analysis, data from this
study showed that, in contrast to the effects of hypother-
mia, acidosis increased fibrinogen breakdown by 1.8-fold
compared with control values, with no effects on fibrino-
gen synthesis (Additional file 1) [54]. Thus, it appears that
there were differential effects on fibrinogen synthesis and
breakdown by acidosis and there was a potential deple-
tion of fibrinogen availability following acidosis.

Fibrinogen Supplementation
Despite the differential effects on fibrinogen synthesis and
breakdown, hemorrhage, hypothermia and acidosis all
resulted in a single outcome: a deficit in fibrinogen avail-
ability. Beneficial effects of fibrinogen supplementation
were reported in animal and in vitro studies following the
administration of Haemocomplettan P®, a fibrinogen con-
centrate available in European countries [55-60] (some of
these studies were conducted or sponsored by the manu-
facture). In pigs with 60% blood volume exchanged with
hydroxyethyl starch, Fries et al. investigated the effects of
Haemocomplettan P® together with prothrombin com-
plex concentrate on blood loss from a standard liver lacer-
ation and survival [55]. The blood loss in the supplement
group was 240 ml (50 – 830 ml) compared to 1800 ml
(1500 – 2500 ml) in the placebo group. All animals in the
supplement group survived compared to 20% survival in
the placebo group [55]. Similarly, in a rat model with sep-
sis-induced DIC, Kaspereit et al. reported significant
decrease in mortality following treatment with Haemo-
complettan P® [58]. Thus, fibrinogen supplementation
may be potentially beneficial following massive blood

loss and DIC. It remains unclear, however, how early
fibrinogen supplementation affects the dynamic features
of fibrinogen metabolism.

Consistent with animal studies, decreased fibrinogen lev-
els have been documented in coagulopathic patients [61-
63]. In search for effective treatments, efforts have been
made to evaluate outcomes from transfusion of blood
products, such as fresh whole blood, fresh frozen plasma
(FFP), cryoprecipitate, and red blood cells (RBC). Recent
published retrospective studies suggested potential bene-
fits of transfusion of a higher ratio of fibrinogen to red
blood cell unit ratio in trauma patients [6,7,64-72].

To observe the effects of fibrinogen supplementation on
survival, Stinger et al. performed a retrospective study in
massively transfused trauma patients at a US Army com-
bat support hospital [72]. Two hundred fifty-two trauma
patients with an average ISS of 21 ± 10 who received 10 or
more units of RBC in 24 hours were included in the study.
The amount of fibrinogen transfused was calculated based
on fibrinogen amount within each blood product, such as
fresh whole blood, cryoprecipitate, aphaeresis platelets
and FFP. The ratio of fibrinogen-to-RBC was used to iden-
tify two patient groups: a low ratio group (ratio < 0.2 g
fibrinogen per RBC unit) and a high ratio group (ratio
≥0.2 g fibrinogen per RBC unit). The authors reported
mortality rates of 52% and 24% in the low and high ratio
groups, respectively (p < 0.001). Upon logistic regression
analysis, the fibrinogen-to-RBC ratio was found to be
independently associated with mortality [72]. It should be
mentioned, however, that some recent studies have called
into question the value of high fibrinogen-to-RBC ratio in
treatment of trauma patients [73,74]. Future prospective
clinical trials are needed to clarify the effects of a higher
ratio of fibrinogen to RBC transfusion and outcome in
trauma patients.

Conclusion
Fibrinogen availability is regulated through synthesis and
breakdown to maintain coagulation function. Recent
studies have revealed the mechanisms underlying changes
in fibrinogen availability following trauma. Hemorrhage,
hypothermia and acidosis alter fibrinogen metabolism in
a variety of ways: First, moderate hemorrhage accelerated
fibrinogen breakdown with no significant effects on
fibrinogen. Second, hypothermia of 32°C inhibited
fibrinogen synthesis with no effects on fibrinogen break-
down. Finally, acidosis of pH 7.1 accelerated fibrinogen
breakdown without changing fibrinogen synthesis.
Despite the differential effects on fibrinogen synthesis and
breakdown, hemorrhage, hypothermia and acidosis all
lead to a deficit in fibrinogen availability. Recent retro-
spective clinical studies in trauma patients and animal tri-
als suggest that fibrinogen supplementation may be
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beneficial. Further prospective clinical trials to confirm
the benefits of fibrinogen supplementation in trauma
patients are warranted.
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